Critical Role of Quantum Confinement on Transfer Length in Achieving High-Performance In₂O₃ Transistors with Ultra-Scaled Contacted Gate Pitch Jian-Yu Lin¹, Chang Niu¹, Zehao Lin¹, Chang Liu², Juanjuan Lu², Haiyan Wang², Peide D. Ye^{1, *} ¹Elmore Family School of Electrical and Computer Engineering and ²School of Materials Engineering, Purdue University, West Lafayette, Indiana, USA, *Email: yep@purdue.edu ## **Abstract** In this work, for the first time, we study the contact length (L_{C}) and contacted gate pitch (CGP) scaling in ultrathin $\rm In_{2}O_{3}$ field-effect transistors (FETs). A large 53 % decrease in transfer length (L_{T}) from 76 to 36 nm can be observed by increasing the $\rm In_{2}O_{3}$ channel thickness ($\rm T_{ch}$) from 1.2 nm to 2.0 nm, which can be understood by the positive-to-negative Schottky barrier height (Φ_{SB}) transition modulated by the quantum confinement (QC) effect in $\rm In_{2}O_{3}$ channel. Leveraging the record-low $\rm L_{T}$ of 36 nm optimized by the QC, 2.0 nm $\rm In_{2}O_{3}$ FETs demonstrate a record-low contact resistance ($\rm R_{C}$) of 140 $\rm \Omega$ - $\rm \mu m$ and a record-high maximum drain current ($\rm I_{D,max}$) of 1.57 mA/ $\rm \mu m$ at ultra-scaled CGP of 80 nm among all reported oxide semiconductor FETs with CGP scaling. ## Introduction Oxide semiconductor (OS) FETs have garnered renewed attention in recent years due to their potential application as back-end-of-line (BEOL) compatible transistors in monolithic 3D integration, a promising approach for advancing both "More Moore" and "Morethan-Moore" technologies [1-7]. Among various OS FETs, atomiclayer-deposited (ALD) In₂O₃ FETs have exhibited significant potential owing to their high electron mobility of 152 cm²/V·s [2], remarkable on-current performance reaching nearly 20 mA/µm in gate-all-around structure [3], excellent reliability [4], and ultralow R_C of 23.4 Ω · μm (measured at 10 K) benefiting from the negative Φ_{SB} at the metal/In₂O₃ contact [5]. Although many works have focused on channel length (L_{ch}) scaling to achieve high-performance In₂O₃ FETs [2-7], L_C and CGP (= $L_{ch} + L_{C}$) scaling of In_2O_3 transistors has not been studied yet. CGP scaling is of great importance for reducing the transistor footprint and increasing the device density per area. In this work, the L_C and CGP scaling of ultrathin In₂O₃ FETs are investigated for the first time. Through increasing the T_{ch} of In₂O₃ from 1.2 nm to 2.0 nm, the L_T of the FETs can be reduced from 76 to 36 nm, which can be understood by the positive-to-negative Φ_{SB} transition governed by the QC effect. With the record-low L_T of 36 nm, 2.0 nm In₂O₃ FETs demonstrate a record-low R_C of 140 Ω·μm and a record-high I_{D, max} of 1.57 mA/μm at ultra-scaled CGP of 80 nm among all OS FETs with scaled CGP. Fig. 1 summarizes the highlights of this research. **Experiments** **Fig. 2 (a)** illustrates the schematic device structure of a back-gate In_2O_3 transistor with L_C scaling. Note that the CGP is defined as L_C plus L_{ch} . **Fig. 2 (b)** describes the fabrication process flow of the back-gate In_2O_3 transistors. As the start, 40 nm Pt was e-beam evaporated on $Al_2O_3/SiO_2/Si$ substrate as back-gate. 6 nm HfO_2 was then deposited by plasma-enhanced ALD (PE-ALD) at 200 °C to serve as gate dielectric. Next, ultrathin In_2O_3 with T_{ch} between 1.2 to 2.0 nm was grown by ALD at 225 °C. Isolation of the In_2O_3 channel was performed by Ar dry etching. 40 nm Ni was e-beam evaporated as the source/drain (S/D). Finally, post O_2 annealing at 270 °C for 30 minutes was used to improve the device performance. **Fig. 3** shows the cross-sectional scanning transmission electron microscopy (STEM) image with energy dispersive X-ray spectroscopy (EDS) elemental mappings of an In_2O_3 FET with an ultra-scaled CGP of 80 nm ($L_{ch} = L_C = 40$ nm). ## **Results and Discussion** **Fig. 4 (a)** demonstrates the transfer characteristics of In_2O_3 FETs with different T_{ch} at $L_{ch} = L_C = 1$ μm. **Fig. 4 (b)** plots the T_{ch} -dependent field-effect mobility (μ_{FE}) extracted from the transconductance (g_m) of **Fig. 4 (a)**. In **Fig. 4**, two T_{ch} -dependent properties, threshold voltage (V_T) and μ_{FE} , in In_2O_3 FETs can be observed. When T_{ch} increases from 1.2 to 2.0 nm, the increase of carrier density in the In_2O_3 channel results in the negative shift of V_T [6, 8]. As for the higher μ_{FE} in thicker In_2O_3 film (e.g. $\mu_{FE} = 62.2$ cm²/(V·s) when $T_{ch} = 2.0$ nm), this is due to the reduction of surface scattering effect on the transport at the channel center in thicker In_2O_3 film [6, 8]. **Fig. 5** studies the L_C scaling effect on the $I_D - V_{CS}$ curves of 2.0 nm In_2O_3 FETs at short $L_{ch} = 80$ nm. As the L_C scales down to 40 nm, some degradations of $I_{D,max}$ and g_m are caused by the increase of R_C due to the current crowding effect and the rise of S/D metal line resistance (R_{metal}). To further investigate the impact of L_C scaling, the transmission line method (TLM) was adopted to extract the R_C at different T_{ch} and L_C , as shown in **Fig. 6**. **Fig. 7** (a) presents the dependency of R_C (extracted by TLM) on L_C in In_2O_3 FETs with different T_{ch} . Solid lines in the figure represent the fitting results of the experimental data using equation (1) [9]: $$R_C = R_{C0} \coth(L_C/L_T); L_T = \sqrt{\rho_C/R_{sh}}$$ (1) where R_{C0} , ρ_C , and R_{sh} denote the R_C when $L_C >> L_T$, contact resistivity, and sheet resistance, respectively. When the T_{ch} changes from 1.2 to 2.0 nm, one can notice the reduction of R_{C0} from 233 to 146 Ω - μ m [Fig. 7 (a)], L_T from 76 to 36 nm [Fig. 7 (a) and Fig. 7 (b)], and ρ_C from 1.2×10^{-6} to 7.7×10^{-8} $\Omega \cdot \text{cm}^2$ [Fig. 7 (b)]. All the above observations indicate that the Ni/In₂O₃ contact becomes better when the In₂O₃ film is thickened to $T_{ch} = 2.0$ nm. With good S/D contact in 2.0 nm In₂O₃ FETs, a record-low $R_C = 140$ $\Omega \cdot \mu$ m at ultra-scaled L_C of 40 nm (Fig. 8) is achieved. The key reason behind the T_{ch}-dependent R_C in In₂O₃ FETs is the change of signs of Φ_{SB} controlled by the QC effect [6]. Fig. 9 illustrates the schematic band diagrams at the interface between S/D metal and In₂O₃ channel with various T_{ch}. Due to the strong Fermi-level pinning at metal/In₂O₃ interface [6], the metal Fermi-level (E_{FM}) will be pinned at the charge neutrality level (CNL) of In₂O₃. When T_{ch} reduces from 2.0 nm [Fig. 9 (b)] to 1.2 nm [Fig. 9 (a)], the QC effect will widen the bandgap of In₂O₃ and move the energy of the conduction band minimum (E_C) upwards [6]. Considering the energy position of CNL is independent of T_{ch} [6, 8, 10, 11], the shift of E_C by QC will result in different band alignments among E_C, CNL, and E_{FM} at the metal/In₂O₃ interface. For instance, the E_{C} is "above" the CNL and the E_{FM} for 1.2 nm In_2O_3 [Fig. 9 (a)] [6], which creates a positive Φ_{SB} contact with larger R_C , ρ_C , and L_T (**Fig. 7**). On the other hand, the E_C is "below" the CNL and the E_{FM} for 2.0 nm In₂O₃ [Fig. 9 (b)] [6], which contributes to a negative Φ_{SB} contact with smaller R_C , ρ_C , and L_T (Fig. 7). This positive-to-negative shift of Φ_{SB} in In_2O_3 as the T_{ch} increases has been studied and verified in our previous work [6]. To sum up, the QC effect can modulate the following three things: 1. band alignments among E_{C} , CNL, and E_{FM} at the metal/ In_2O_3 interface; 2. Φ_{SB} at the metal/ In_2O_3 interface; 3. R_C , ρ_C , and L_T of In_2O_3 FETs. Based on the current crowding model described by eq. (1), R_C will elevate exponentially as $L_C < L_T$. Therefore, the understanding of QC effect to obtain $\Phi_{SB} < 0$ and minimize the L_T of In₂O₃ FETs is critical for achieving low R_C and high-performance transistors at ultra-scaled L_C and CGP. Fig. 10 shows the I_D-V_{GS} curves of 2.0 nm In_2O_3 FETs with ultrascaled $L_C=80$ or 40 nm (CGP = 120 or 80 nm), $L_{ch}=40$ nm, and enhancement-mode operations ($V_T>0$ V). Fig. 11 presents the output characteristics of these ultra-scaled CGP devices using pulse I-V measurements to alleviate the self-heating effect [12]. Benefiting from the negative Φ_{SB} contact, record-low $R_C=140~\Omega$ -μm, and record-low $L_T=36$ nm in 2.0 nm In_2O_3 FETs, record-high $I_{D,max}$ of 2.16 and 1.57 mA/μm are achieved in ultra-scaled CGP = 120 and 80 nm, respectively, compared to other reported OS FETs with CGP scaling. Conclusion This work offers the first study of L_C and CGP scaling in ultrathin $\rm In_2O_3$ FETs. It is found that using the QC effect in $\rm In_2O_3$ to modulate the Φ_{SB} and minimize the L_T is essential to attain high-performance $\rm In_2O_3$ devices in ultra-scaled CGP. Table I presents the benchmarking of OS FETs with sub-100 nm $\rm L_{ch}$. Among all OS FETs with scaled CGP, the 2.0 nm $\rm In_2O_3$ FETs in this work stand out with record-low $\rm R_C$, record-low $\rm L_T$, record-high $\rm I_{D,\,max}$ in ultra-scaled CGP. Note that when reporting the $\rm L_T$ value, one should use eq. (1) to extract the $\rm L_T$ from $\rm R_C-\rm L_C$ dependency rather than using the x-intercept of TLM, which might give inaccurate and underestimated $\rm L_T$ values. This work is supported by NSF, SRC, and Samsung Electronic. **Fig. 1.** Highlights of this work, including the first investigation of L_C and CGP scaling in ultrathin In_2O_3 FETs, the first study of QC effect on L_T of ultrathin In_2O_3 FETs with $T_{ch}=1.2-2.0$ nm, and record-high performance 2.0 nm In_2O_3 FETs (CGP = 80 nm) among reported OS transistors with scaled CGP. Fig. 2. (a) Device schematic of a back-gate In_2O_3 transistor. CGP is defined as L_{ch} plus L_C of source or drain metals. The minimum CGP in this work is 80 nm, which is $L_{ch} + L_C = 40 + 40$ nm = 80 nm. (b) Fabrication process flow of back-gate In_2O_3 transistors. Different T_{ch} from 1.2 - 2.0 nm of the In_2O_3 channel was grown by ALD at 225 °C with (CH₃)₃In (TMIn) and H_2O as precursors. Fig. 3. Cross-sectional STEM image with EDS elemental mapping (Ni, In, Hf, and Pt) of an In_2O_3 FET with ultra-scaled CGP of 80 nm with L_{ch} =40 nm and L_{C} = 40 nm. Fig. 4. (a) Transfer characteristics of In₂O₃ FETs with $L_{ch}=L_C=1$ μm , and $T_{ch}=1.2,\ 1.6,$ and 2.0 nm. When T_{ch} increases from 1.2 to 2.0 nm, the increase of carrier density in In₂O₃ channel results in the negative shift of V_T [6, 8]. (b) Extracted μ_{FE} from the g_m of In₂O₃ FETs with different T_{ch} . Measured gate oxide capacitance (Cox) of $1.6\times 10^{-6}\ F/cm^2$ was used for the μ_{FE} extraction. The larger mobility in the thicker In₂O₃ channel comes from the reduction of surface scattering inside the transistor channel [6, 8]. Fig. 5. Transfer characteristics of In_2O_3 FETs with short $L_{ch}=80$ nm, $T_{ch}=2.0$ nm, and different $L_C=1$, 0.4, 0.2, 0.1, 0.08, 0.06, and 0.04 μm . The degradation of I_D and maximum g_m are caused by the rise of R_C due to the current crowding effect and the increase of metal line resistance when L_C becomes smaller. Fig. 6. TLM measurements at $V_{GS} - V_T = V_{OV} = 2$ V on (a) 1.2 nm and (b) 2.0 nm In_2O_3 transistors with $L_C = 1$, 0.4, 0.2, 0.1, 0.08, and 0.06 μm. In the TLM analysis, to extract the correct R_C at different L_C , R_{metal} is removed from the measured total resistance ($R_{measure}$) before extracting R_C and sheet resistance (R_{sh}). For 2.0 nm In_2O_3 FETs, a low R_C of 170 Ω ·μm can be extracted at scaled L_C of 60 nm. **Fig. 7. (a)** R_C extracted by TLM as a function of L_C in In₂O₃ FETs with different T_{ch} = 1.2, 1.6, and 2.0 nm at V_{OV} = 2 V. Symbols represent the experimental data. Solid lines are the fitting results using eq. (1), which can be used to extract L_T and the R_C when L_C >> L_T (denoted as R_{C0}). **(b)** T_{ch}-dependent L_T and ρ_C extracted from **(a)** In₂O₃ FETs with T_{ch} = 2.0 nm demonstrate a record-low L_T of 36 nm among OS transistors with scaled CGP. For 2.0 nm In₂O₃, ρ_C of 7.7×10⁻⁸ Ω·cm² can be extracted from L_T = $(\rho_C / R_{sh})^{0.5}$ = 36 nm using eq. (1). Fig. 8. R_C and R_{sh} extracted from TLM as a function of V_{OV} in In_2O_3 FETs with $T_{ch}=2.0$ nm and $L_C=40$ nm. This work shows the smallest R_C of $140~\Omega\cdot\mu m$ among OS transistors with scaled L_C and CGP. The ultralow R_C value under such a scaled L_C benefits from the negative Schottky barrier height at metal/ In_2O_3 contact. Fig. 9. Schematic band diagrams between metal/In₂O₃ contact with various In₂O₃ thickness of (a) $T_{ch} = 1.2$ nm and (b) $T_{ch} = 2.0$ nm. When T_{ch} decreases from (b) 2.0 nm to (a) 1.2 nm, QC effect will move the energy of E_C upward to above CNL and widen the bandgap of In₂O₃ [6]. Band alignments between E_C and CNL are essential in determining whether the Φ_{SB} is > 0 [when E_C is "above" CNL, like (a)] or < 0 [when E_C is "below" CNL, like (b)] [6]. $\Phi_{SB} < 0$ means better contact between metal/In₂O₃ with lower R_C , ρ_C , and L_T . **Fig. 10.** Transfer characteristics of 2.0 nm In_2O_3 FETs with ultrascaled L_C (= 80 / 40 nm) and CGP ($L_C+L_{ch}=120$ / 80 nm) at short $L_{ch}=40$ nm. Both devices are enhancement-mode with linearly extrapolated $V_T\!>\!0.$ Fig. 11. Output characteristics of 2.0 nm In_2O_3 FETs with (a) $L_C = 80$ nm (CGP = 120 nm) and (b) $L_C = 40$ nm (CGP = 80 nm) at $L_{ch} = 40$ nm. Pulse I-V measurements were adopted to suppress the self-heating effect [12]. **References**: [1] S. Datta *et al.*, *IEEE Micro*, pp. 8, 2019. [2] Z. Lin *et al.*, 2024 *VLSI*, T4-3. [3] Z. Zhang *et al.*, *IEEE-EDL*, p. 1905, 2022. [4] Z. Zhang *et al.*, 2023 *VLSI*, T11-3. [5] C. Niu *et al.*, 2023 *IEDM*, 37-2. [6] Jian-Yu Lin *et al.*, 2024 *IEDM*, 12-6. [7] M. Si *et al.*, *Nat Electron*, 164–170, 2022. [8] M. Si *et al.*, *Nano Letters*, pp. 500, 2021. Table I. Benchmarking of sub-100 nm L_{ch} OS FETs with or without L_C and CGP scaling | Ref. | Material | V _T
(V) | L _{ch}
(nm) | L _c
(nm) | CGP
(nm) | Ι _{D, max}
(μ Α /μm) | R _c
(Ω·μm) | L _T (nm) | |-----------|--------------------------------|-----------------------|-------------------------|------------------------|-------------|---|--------------------------|---------------------| | [13] | ITO | 0.3 | 50 | / | / | 1260 | 70 | / | | [14] | IWO | -0.1 | 50 | / | / | 815 | 300 | 1 | | [15] | IGZO | > 0 | 40 | 40 | 80 | 570 | 340 | 51* | | [16] | IGZO | > 0 | 35 | 80 | 115 | 1930 | 227 | 55 | | | | > 0 | 35 | 40 | 75 | 1330 | 325 | | | [5] | In ₂ O ₃ | -3.8 | 50 | / | / | 2620 | 43 | 10* | | This work | In ₂ O ₃ | 0.22 | 40 | 80 | 120 | 2160 | 133 | 36 | | | | 0.01 | 40 | 40 | 80 | 1570 | 140 | (22*) | *L_T extracted by TLM, which might be inaccurate and underestimated [9] H. Murrmann and D. Widmann, *IEEE-TED*, pp. 1022, 1969. [10] Van de Walle *et al.*, *Nature*, p. 626, 2003. [11] J. Robertson, *J. Vac. Sci. Technol.*, pp. 1785, 2000. [12] P. -Y. Liao *et al.*, *2022 IEDM*, pp. 12.4.1. [13] Y. Kang *et al.*, *IEEE-TED*, pp. 4692, 2024. [14] Eknath Sarkar *et al.*, *2024 IEDM*, 12-1. [15] Z. Wu *et al.*, *IEEE-EDL*, pp. 408, 2024. [16] W. Zhao *et al.*, *2024 IEDM*, 36-2.